Infinity is a concept in many fields, most predominantly mathematics and physics, that refers to a quantity without bound or end. People have developed various ideas throughout history about the nature of infinity. The word comes from the Latin

In mathematics, "infinity" is often treated as if it were a number (i.e., it counts or measures things: "an infinite number of terms") but it is not the same sort of number as the real numbers. In number systems incorporating infinitesimals, the reciprocal of an infinitesimal is an infinite number, i.e. a number greater than any real number. Georg Cantor formalized many ideas related to infinity and infinite sets during the late 19th and early 20th centuries. In the theory he developed, there are infinite sets of different sizes (called cardinalities). For example, the set of integers is countably infinite, while the set of real numbers is uncountably infinite.

The infinity symbol ∞ is sometimes called the lemniscate, from the Latin lemniscus, meaning "ribbon". John Wallis is credited with introducing the symbol in 1655 in his De sectionibus conicis. One conjecture about why he chose this symbol is that he derived it from a Roman numeral for 1000 that was in turn derived from the Etruscan numeral for 1000, which looked somewhat like and was sometimes used to mean "many."

Another conjecture is that he derived it from the Greek letter omega, the last letter in the Greek alphabet. Also, before typesetting machines were invented, infinity was easily made in printing by typesetting the numeral 8 on its side.

Ancient cultures had various ideas about the nature of infinity. The ancient Indians and Greeks, unable to codify infinity in terms of a formalized mathematical system approached infinity as a philosophical concept.

The earliest atestable accounts of mathematical infinity come from Zeno of Elea (ca. 490 BC? ca. 430 BC?), a pre-Socratic Greek philosopher of southern Italy and member of the Eleatic School founded by Parmenides. Aristotle called him the inventor of the dialectic. He is best known for his paradoxes, which Bertrand Russell has described as "immeasurably subtle and profound".

In accordance with the traditional view of Aristotle, the Hellenistic Greeks generally preferred to distinguish the potential infinity from the actual infinity; for example, instead of saying that there are an infinity of primes, Euclid prefers instead to say that there are more prime numbers than contained in any given collection of prime numbers (Elements, Book IX, Proposition 20).

The Isha Upanishad of the Yajurveda (c. 4th to 3rd century BC) states that "if you remove a part from infinity or add a part to infinity, still what remains is infinity".

The Indian mathematical text Surya Prajnapti (c. 400 BC) classifies all numbers into three sets: enumerable, innumerable, and infinite. Each of these was further subdivided into three orders:

n physics, approximations of real numbers are used for continuous measurements and natural numbers are used for discrete measurements (i.e. counting). It is therefore assumed by physicists that no measurable quantity could have an infinite value,[citation needed] for instance by taking an infinite value in an extended real number system, or by requiring the counting of an infinite number of events. It is for example presumed impossible for any body to have infinite mass or infinite energy. Concepts of infinite things such as an infinite plane wave exist, but there are no experimental means to generate them.

The practice of refusing infinite values for measurable quantities does not come from a priori or ideological motivations, but rather from more methodological and pragmatic motivations.[citation needed] One of the needs of any physical and scientific theory is to give usable formulas that correspond to or at least approximate reality. As an example if any object of infinite gravitational mass were to exist, any usage of the formula to calculate the gravitational force would lead to an infinite result, which would be of no benefit since the result would be always the same regardless of the position and the mass of the other object.

The formula would be useful neither to compute the force between two objects of finite mass nor to compute their motions. If an infinite mass object were to exist, any object of finite mass would be attracted with infinite force (and hence acceleration) by the infinite mass object, which is not what we can observe in reality. Sometimes infinite result of a physical quantity may mean that the theory being used to compute the result may be approaching the point where it fails. This may help to indicate the limitations of a theory.

This point of view does not mean that infinity cannot be used in physics. For convenience's sake, calculations, equations, theories and approximations often use infinite series, unbounded functions, etc., and may involve infinite quantities. Physicists however require that the end result be physically meaningful. In quantum field theory infinities arise which need to be interpreted in such a way as to lead to a physically meaningful result, a process called renormalization.

However, there are some theoretical circumstances where the end result is infinity. One example is the singularity in the description of black holes. Some solutions of the equations of the general theory of relativity allow for finite mass distributions of zero size, and thus infinite density. This is an example of what is called a mathematical singularity, or a point where a physical theory breaks down. This does not necessarily mean that physical infinities exist; it may mean simply that the theory is incapable of describing the situation properly. Two other examples occur in inverse-square force laws of the gravitational force equation of Newtonian gravity and Coulomb's law of electrostatics. At r=0 these equations evaluate to infinities.

Cosmologists have long sought to discover whether infinity exists in our physical universe: Are there an infinite number of stars? Does the universe have infinite volume? Does space "go on forever"? This is an open question of cosmology. Note that the question of being infinite is logically separate from the question of having boundaries. The two-dimensional surface of the Earth, for example, is finite, yet has no edge. By traveling in a straight line one will eventually return to the exact spot one started from. The universe, at least in principle, might have a similar topology; if one travelled in a straight line through the universe perhaps one would eventually revisit one's starting point.

If, on the other hand, the universe were not curved like a sphere but had a flat topology, it could be both unbounded and infinite. The curvature of the universe can be measured through multipole moments in the spectrum of the cosmic background radiation. As to date, analysis of the radiation patterns recorded by the WMAP spacecraft hints that the universe has a flat topology. This would be consistent with an infinite physical universe. The Planck spacecraft launched in 2009 is expected to record the cosmic background radiation with 10 times higher precision, and will give more insight into the question whether the universe is infinite or not.

In logic an infinite regress argument is "a distinctively philosophical kind of argument purporting to show that a thesis is defective because it generates an infinite series when either (form A) no such series exists or (form B) were it to exist, the thesis would lack the role (e.g., of justification) that it is supposed to play."

The IEEE floating-point standard specifies positive and negative infinity values; these can be the result of arithmetic overflow, division by zero, or other exceptional operations.

Some programming languages (for example, J and UNITY) specify greatest and least elements, i.e. values that compare (respectively) greater than or less than all other values. These may also be termed top and bottom, or plus infinity and minus infinity; they are useful as sentinel values in algorithms involving sorting, searching or windowing. In languages that do not have greatest and least elements, but do allow overloading of relational operators, it is possible to create greatest and least elements.

Perspective artwork utilizes the concept of imaginary vanishing points, or points at infinity, located at an infinite distance from the observer. This allows artists to create paintings that realistically render space, distances, and forms. Artist M. C. Escher is specifically known for employing the concept of infinity in his work in this and other ways.

From the perspective of cognitive scientists George Lakoff, concepts of infinity in mathematics and the sciences are metaphors, based on what they term the Basic Metaphor of Infinity (BMI), namely the ever-increasing sequence <1,2,3,...>.

The structure of a fractal object is reiterated in its magnifications. Fractals can be magnified indefinitely without losing their structure and becoming "smooth"; they have infinite perimeters - some with infinite, and others with finite surface areas. One such fractal curve with an infinite perimeter and finite surface area is the Koch snowflake.

Leopold Kronecker was skeptical of the notion of infinity and how his fellow mathematicians were using it in 1870s and 1880s. This skepticism was developed in the philosophy of mathematics called finitism, an extreme form of the philosophical and mathematical schools of constructivism and Intuitionism.

Mathematics With Infinity

MOBIUS STRIP

http://www.crystalinks.com/infinity.html

*infinitas*or "unboundedness".In mathematics, "infinity" is often treated as if it were a number (i.e., it counts or measures things: "an infinite number of terms") but it is not the same sort of number as the real numbers. In number systems incorporating infinitesimals, the reciprocal of an infinitesimal is an infinite number, i.e. a number greater than any real number. Georg Cantor formalized many ideas related to infinity and infinite sets during the late 19th and early 20th centuries. In the theory he developed, there are infinite sets of different sizes (called cardinalities). For example, the set of integers is countably infinite, while the set of real numbers is uncountably infinite.

### The Infinity Symbol

Another conjecture is that he derived it from the Greek letter omega, the last letter in the Greek alphabet. Also, before typesetting machines were invented, infinity was easily made in printing by typesetting the numeral 8 on its side.

### History

**Early Greek**The earliest atestable accounts of mathematical infinity come from Zeno of Elea (ca. 490 BC? ca. 430 BC?), a pre-Socratic Greek philosopher of southern Italy and member of the Eleatic School founded by Parmenides. Aristotle called him the inventor of the dialectic. He is best known for his paradoxes, which Bertrand Russell has described as "immeasurably subtle and profound".

In accordance with the traditional view of Aristotle, the Hellenistic Greeks generally preferred to distinguish the potential infinity from the actual infinity; for example, instead of saying that there are an infinity of primes, Euclid prefers instead to say that there are more prime numbers than contained in any given collection of prime numbers (Elements, Book IX, Proposition 20).

**Early Hindu**The Isha Upanishad of the Yajurveda (c. 4th to 3rd century BC) states that "if you remove a part from infinity or add a part to infinity, still what remains is infinity".

The Indian mathematical text Surya Prajnapti (c. 400 BC) classifies all numbers into three sets: enumerable, innumerable, and infinite. Each of these was further subdivided into three orders:

- Enumerable: lowest, intermediate, and highest
- Innumerable: nearly innumerable, truly innumerable, and innumerably innumerable
- Infinite: nearly infinite, truly infinite, infinitely infinite

### Physics

The practice of refusing infinite values for measurable quantities does not come from a priori or ideological motivations, but rather from more methodological and pragmatic motivations.[citation needed] One of the needs of any physical and scientific theory is to give usable formulas that correspond to or at least approximate reality. As an example if any object of infinite gravitational mass were to exist, any usage of the formula to calculate the gravitational force would lead to an infinite result, which would be of no benefit since the result would be always the same regardless of the position and the mass of the other object.

The formula would be useful neither to compute the force between two objects of finite mass nor to compute their motions. If an infinite mass object were to exist, any object of finite mass would be attracted with infinite force (and hence acceleration) by the infinite mass object, which is not what we can observe in reality. Sometimes infinite result of a physical quantity may mean that the theory being used to compute the result may be approaching the point where it fails. This may help to indicate the limitations of a theory.

This point of view does not mean that infinity cannot be used in physics. For convenience's sake, calculations, equations, theories and approximations often use infinite series, unbounded functions, etc., and may involve infinite quantities. Physicists however require that the end result be physically meaningful. In quantum field theory infinities arise which need to be interpreted in such a way as to lead to a physically meaningful result, a process called renormalization.

However, there are some theoretical circumstances where the end result is infinity. One example is the singularity in the description of black holes. Some solutions of the equations of the general theory of relativity allow for finite mass distributions of zero size, and thus infinite density. This is an example of what is called a mathematical singularity, or a point where a physical theory breaks down. This does not necessarily mean that physical infinities exist; it may mean simply that the theory is incapable of describing the situation properly. Two other examples occur in inverse-square force laws of the gravitational force equation of Newtonian gravity and Coulomb's law of electrostatics. At r=0 these equations evaluate to infinities.

### Cosmology

If, on the other hand, the universe were not curved like a sphere but had a flat topology, it could be both unbounded and infinite. The curvature of the universe can be measured through multipole moments in the spectrum of the cosmic background radiation. As to date, analysis of the radiation patterns recorded by the WMAP spacecraft hints that the universe has a flat topology. This would be consistent with an infinite physical universe. The Planck spacecraft launched in 2009 is expected to record the cosmic background radiation with 10 times higher precision, and will give more insight into the question whether the universe is infinite or not.

### Logic

### Computing

Some programming languages (for example, J and UNITY) specify greatest and least elements, i.e. values that compare (respectively) greater than or less than all other values. These may also be termed top and bottom, or plus infinity and minus infinity; they are useful as sentinel values in algorithms involving sorting, searching or windowing. In languages that do not have greatest and least elements, but do allow overloading of relational operators, it is possible to create greatest and least elements.

### The Arts and Cognitive Sciences

From the perspective of cognitive scientists George Lakoff, concepts of infinity in mathematics and the sciences are metaphors, based on what they term the Basic Metaphor of Infinity (BMI), namely the ever-increasing sequence <1,2,3,...>.

### Fractals

### Mathematics Without Infinity

Mathematics With Infinity

MOBIUS STRIP

http://www.crystalinks.com/infinity.html

## No comments:

## Post a Comment